周旭峰-中国科学院大学-UCAS


本站和网页 http://people.ucas.ac.cn/~0017266 的作者无关,不对其内容负责。快照谨为网络故障时之索引,不代表被搜索网站的即时页面。

周旭峰-中国科学院大学-UCAS
[中文]
[English]
招生信息
教育背景
工作经历
专利与奖励
出版信息
科研活动
指导学生
基本信息
周旭峰 男 博导 中国科学院宁波材料技术与工程研究所电子邮件: zhouxf@nimte.ac.cn通信地址: 浙江省宁波市镇海区中官西路1219号邮政编码: 315201
研究领域
电化学储能、石墨烯
招生信息
招生专业
080501-材料物理与化学
招生方向
电化学储能石墨烯
教育背景
2003-09--2008-06 复旦大学 获理学博士学位1999-09--2003-06 复旦大学 获理学学士学位
工作经历
工作简历
2015-01~现在, 中国科学院宁波材料技术与工程研究所, 研究员2011-01~现在, 中国科学院宁波材料技术与工程研究所, 副研究员2008-10~2010-12,中国科学院宁波材料技术与工程研究所, 博士后
专利与奖励
奖励信息
(1)&nbsp中科院“卢嘉锡青年人才奖”,&nbsp,&nbsp部委级,&nbsp2014(2)&nbsp浙江省优秀博士后,&nbsp,&nbsp省级,&nbsp2014(3)&nbsp宁波市优秀博士后,&nbsp,&nbsp市地级,&nbsp2013
专利成果
( 1 )&nbsp一种石墨烯的溶液相制备方法,&nbsp发明,&nbsp2009,&nbsp第 2 作者,&nbsp专利号: 200910099595.X( 2 )&nbsp石墨烯改性磷酸铁锂正极活性材料及其制备方法以及锂离子二次电池,&nbsp发明,&nbsp2009,&nbsp第 2 作者,&nbsp专利号: 200910155316.7 ( 3 )&nbsp石墨烯/磷酸铁锂复合正极材料及其制备方法以及锂离子二次电池,&nbsp发明,&nbsp2010,&nbsp第 2 作者,&nbsp专利号: 201010226062.6( 4 )&nbsp一种石墨烯的制备方法,&nbsp发明,&nbsp2010,&nbsp第 2 作者,&nbsp专利号: 201010514807.9( 5 )&nbsp用于锂二次电池的正极负极导电添加剂及其制备方法和相关锂二次电池的制备方法,&nbsp发明,&nbsp2010,&nbsp第 2 作者,&nbsp专利号: 201010595726.6( 6 )&nbsp单分散纳米橄榄石型锰基磷酸盐正极材料的制备方法及其锂离子二次电池,&nbsp发明,&nbsp2011,&nbsp第 2 作者,&nbsp专利号: 201110146671.5( 7 )&nbsp一种石墨烯涂层改性的锂二次电池的电极片制作方法,&nbsp发明,&nbsp2011,&nbsp第 4 作者,&nbsp专利号: PCT/CN2011/081697( 8 )&nbsp一种制备石墨烯的方法,&nbsp发明,&nbsp2011,&nbsp第 2 作者,&nbsp专利号: 201110108756.4( 9 )&nbsp石墨烯卷的制备方法,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210556684.4( 10 )&nbsp石墨烯及其制备方法、超级电容器,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210560251.6( 11 )&nbsp一种石墨烯/导电聚合物复合材料及其制备方法,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210371240.3( 12 )&nbsp一种多孔石墨烯的制备方法,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210367072( 13 )&nbsp一种集流体及其制备方法,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210050410.8( 14 )&nbsp一种石墨烯基导电油墨、制备方法及其制备的柔性薄膜,&nbsp发明,&nbsp2012,&nbsp第 1 作者,&nbsp专利号: 201210592284.9( 15 )&nbsp一种石墨烯及其制备方法,&nbsp发明,&nbsp2014,&nbsp第 1 作者,&nbsp专利号: 201410020035.1( 16 )&nbsp一种石墨烯粉体及其制备方法,&nbsp发明,&nbsp2014,&nbsp第 1 作者,&nbsp专利号: 201410020760.9( 17 )&nbsp一种石墨烯导热膜的制备方法,&nbsp发明,&nbsp2014,&nbsp第 1 作者,&nbsp专利号: 201410075835.3( 18 )&nbsp石墨烯卷的制备方法,&nbsp发明,&nbsp2013,&nbsp第 1 作者,&nbsp专利号: 201310309672.6( 19 )&nbsp一种多孔石墨烯及其制备方法、超级电容器,&nbsp发明,&nbsp2013,&nbsp第 1 作者,&nbsp专利号: 201310286959.1( 20 )&nbsp一种复合油墨,&nbsp发明,&nbsp2013,&nbsp第 1 作者,&nbsp专利号: 201310414019.6( 21 )&nbsp一种石墨烯/细菌纤维素/碳纳米管复合膜制备方法及其应用,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710059832.4( 22 )&nbsp一种石墨烯量子点/介孔碳复合材料的制备方法及其应用,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710133816.5( 23 )&nbsp一种石墨烯粉体的制备方法及超级电容器,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710287579.8( 24 )&nbsp一种石墨烯基多孔碳的纯化方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710447826.6( 25 )&nbsp一种电极材料及超级电容器,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710485931.9( 26 )&nbsp一种氮掺杂石墨烯纳米卷三维宏观材料及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710525007.9( 27 )&nbsp一种石墨烯柔性复合电极、其制备方法及柔性超级电容器,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710533489.2( 28 )&nbsp一种石墨烯复合多孔炭的制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710541956.6( 29 )&nbsp一种柔性超级电容器电极及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710556441.3( 30 )&nbsp一种石墨烯的制备方法,&nbsp发明,&nbsp2017,&nbsp第 3 作者,&nbsp专利号: 201710708215.2( 31 )&nbsp一种复合纳滤膜及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710712227.2( 32 )&nbsp一种活性炭钛酸锂锂离子电容器化成方法,&nbsp发明,&nbsp2017,&nbsp第 3 作者,&nbsp专利号: 201710719582.2( 33 )&nbsp一种沉积基体及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710958144.1( 34 )&nbsp金属锂复合材料及其制备方法、多层金属锂复合材料及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201710958308.0( 35 )&nbsp一种石墨烯基导热复合材料及其制备方法,&nbsp发明,&nbsp2017,&nbsp第 2 作者,&nbsp专利号: 201711437224.9
出版信息
发表论文
[1] 李妙妙, 丁世云, 周旭峰, 刘兆平. 相变材料应用于电池模组散热特性的模拟实验. 电源技术. 2022, 46(1):&nbsp51-54, http://lib.cqvip.com/Qikan/Article/Detail?id=7106448422.[2] 韩雪, 邓伟, 周旭峰, 刘兆平. 石墨烯在储能领域应用的专利分析. 储能科学与技术. 2022, 335-349, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDAUTO&filename=CNKX202201038&v=MDI4OTk4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjdpZlpPWm1GeXprVTczTEppUEFkckc0SE5QTXJvOUdiSVI=.[3] Deng, Wei, Dai, Wenhui, Zhou, Xufeng, Han, Qigao, Fang, Wei, Dong, Ning, He, Bangyi, Liu, Zhaoping. Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg(-1) Lithium Metal Battery. ACS ENERGY LETTERS[J]. 2021, 6(1):&nbsp115-123, https://www.webofscience.com/wos/woscc/full-record/WOS:000609250200015.[4] Jiang, Shunqiong, Zhou, Xufeng, Xiao, Han, Chen, Wen, Xu, Xueyan, Liu, Zhaoping. Robust and durable flexible micro-supercapacitors enabled by graphene nanoscrolls. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 405: http://dx.doi.org/10.1016/j.cej.2020.127009.[5] 张自博, 邓伟, 周旭峰, 刘兆平. 稳定锂电化学沉积和溶解行为的LiC_(6)异质微结构界面层. 物理化学学报. 2021, 37(2):&nbsp158-164, http://lib.cqvip.com/Qikan/Article/Detail?id=7104443236.[6] Chen, Wen, Jiang, Shunqiong, Xiao, Han, Zhou, Xufeng, Xu, Xueyan, Yang, Jingdong, Siddique, Ahmad Hassan, Liu, Zhaoping. Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. CHEMSUSCHEM[J]. 2021, 14(3):&nbsp938-945, http://dx.doi.org/10.1002/cssc.202002641.[7] Zhang, Zibo, Deng, Wei, Zhou, Xufeng, Liu, Zhaoping. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping. ACTA PHYSICO-CHIMICA SINICA[J]. 2021, 37(2):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000614227800008.[8] 蒋蓉蓉, 周旭峰, 刘兆平. 原位化学还原石墨烯增强铜基复合材料制备及性能研究. 热加工工艺. 2020, 49(10):&nbsp62-66, http://lib.cqvip.com/Qikan/Article/Detail?id=7102105290.[9] Yang, Jingdong, Xu, Xueyan, Zhou, Xufeng, Jiang, Shunqiong, Chen, Wen, Shi, Siqi, Wang, Da, Liu, Zhaoping. Ultrasmall Co3O4 Nanoparticles Confined in P, N-Doped Carbon Matrices for High-Performance Supercapacitors. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2020, 124(17):&nbsp9225-9232, http://dx.doi.org/10.1021/acs.jpcc.0c01539.[10] Xu, Xiaojie, Zhou, Xufeng, Wang, Tianyu, Shi, Xiang, Liu, Ya, Zuo, Yong, Xu, Limin, Wang, Mengying, Hu, Xiaofeng, Yang, Xinju, Chen, Jiaxin, Yang, Xiubo, Chen, Lin, Chen, Peining, Peng, Huisheng. Robust DNA-Bridged Memristor for Textile Chips. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(31):&nbsp12762-12768, https://www.webofscience.com/wos/woscc/full-record/WOS:000535045500001.[11] 梁珊珊, 俞成丙, 周旭峰, 刘兆平. 金属锂负极表面构建稳定SEI膜的研究进展. 电源技术. 2020, 44(9):&nbsp1391-1394, http://lib.cqvip.com/Qikan/Article/Detail?id=7102856295.[12] Zhang, Qiuhui, Qiu, Yi, Lin, Feng, Niu, Chao, Zhou, Xufeng, Liu, Zhaoping, Alam, Md Kamrul, Dai, Shenyu, Zhang, Wei, Hu, Jonathan, Wang, Zhiming, Bao, Jiming. Photoacoustic identification of laser-induced microbubbles as light scattering centers for optical limiting in a liquid suspension of graphene nanosheets. NANOSCALE[J]. 2020, 12(13):&nbsp7109-7115, http://dx.doi.org/10.1039/c9nr10516f.[13] Xu, Xueyan, Yang, Jingdong, Zhou, Xufeng, Jiang, Shunqiong, Chen, Wen, Liu, Zhaoping. Highly crumpled graphene-like material as compression -resistant electrode material for high energy -power density supercapacitor. CHEMICAL ENGINEERING JOURNAL[J]. 2020, 397: http://dx.doi.org/10.1016/j.cej.2020.125525.[14] Siddique, Ahmad Hassan, Bokhari, Syeda Wishal, Butt, Rehman, Jiang, Shunqiong, Chen, Wen, Zhou, Xufeng, Liu, Zhaoping. Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. JOURNAL OF MATERIALS SCIENCE[J]. 2020, 55(1):&nbsp309-318, https://www.webofscience.com/wos/woscc/full-record/WOS:000491897900022.[15] Siddique, Ahmad Hassan, Butt, Rehman, Bokhari, Syeda Wishal, Raj, D Vasanth, Zhou, Xufeng, Liu, Zhaoping. All graphene electrode for high-performance asymmetric supercapacitor. INTERNATIONAL JOURNAL OF ENERGY RESEARCH[J]. 2020, 44(2):&nbsp1244-1255, https://www.webofscience.com/wos/woscc/full-record/WOS:000498297300001.[16] Deng, Wei, Zhu, Wenhua, Zhou, Xufeng, Zhao, Fei, Liu, Zhaoping. Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. ENERGY STORAGE MATERIALS[J]. 2019, 23: 693-700, https://www.webofscience.com/wos/woscc/full-record/WOS:000495867200069.[17] Zhu, Wenhua, Deng, Wei, Zhao, Fei, Liang, Shanshan, Zhou, Xufeng, Liu, Zhaoping. Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. ENERGY STORAGE MATERIALS[J]. 2019, 21: 107-114, http://dx.doi.org/10.1016/j.ensm.2018.12.001.[18] Peng, Xing, Cao, Hailiang, Qin, Zhihong, Zheng, Chao, Zhao, Min, Liu, PeiZhi, Xu, Bingshe, Zhou, Xufeng, Liu, Zhaoping, Guo, Junjie. A simple and scalable strategy for preparation of high density graphene for high volumetric performance supercapacitors. ELECTROCHIMICA ACTA[J]. 2019, 305: 56-63, http://dx.doi.org/10.1016/j.electacta.2019.03.042.[19] Zhao, Fei, Zhou, Xufeng, Deng, Wei, Liu, Zhaoping. Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. NANO ENERGY[J]. 2019, 62: 55-63, http://dx.doi.org/10.1016/j.nanoen.2019.04.087.[20] Deng, Wei, Liang, Shanshan, Zhou, Xufeng, Zhao, Fei, Zhu, Wenhua, Liu, Zhaoping. Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(11):&nbsp6267-6274, [21] Li, Tao, Bai, Xue, Gulzar, Umair, Bai, YuJun, Capiglia, Claudio, Deng, Wei, Zhou, Xufeng, Liu, Zhaoping, Feng, Zhifu, Zaccaria, Remo Proietti. A Comprehensive Understanding of Lithium-Sulfur Battery Technology. ADVANCED FUNCTIONAL MATERIALSnull. 2019, 29(32):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000484251200010.[22] Luo, Zhongqing, Fang, Qile, Xu, Xueyan, Raj, D Vasanth, Zhou, Xufeng, Liu, Zhaoping. Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2019, 545: 276-281, http://www.corc.org.cn/handle/1471x/2142189.[23] 韩雪, 马经博, 周旭峰, 汪伟, 刘兆平. 2019全球石墨烯技术专利分析. 新材料产业. 2019, 2-10, http://lib.cqvip.com/Qikan/Article/Detail?id=7100525259.[24] Jiang, Ping, Deng, Wei, Zhou, Xufeng, Feng, Jiwen, Liu, Zhaoping. Vapor-assisted synthesis of hierarchical porous graphitic carbon materials towards energy storage devices. JOURNAL OF POWER SOURCES[J]. 2019, 425: 10-16, http://dx.doi.org/10.1016/j.jpowsour.2019.03.117.[25] Butt, Rehman, Siddique, Ahmad Hassan, Bokhari, Syeda Wishal, Jiang, Shunqiong, Lei, Da, Zhou, Xufeng, Liu, Zhaoping. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries. INTERNATIONAL JOURNAL OF ENERGY RESEARCH[J]. 2019, 43(9):&nbsp4995-5003, [26] 朱文华, 周旭峰, 刘兆平, 施思齐, 王达. 用于稳定金属锂负极的FeF2/PVDF复合保护层. 中国科学:技术科学[J]. 2019, 49(8):&nbsp880-890, http://lib.cqvip.com/Qikan/Article/Detail?id=7002860315.[27] Deng, Wei, Zhu, Wenhua, Zhou, Xufeng, Peng, Xiaoqiang, Liu, Zhaoping. Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(24):&nbsp20387-20395, http://ir.nimte.ac.cn/handle/174433/17386.[28] Deng, Wei, Zhou, Xufeng, Fang, Qile, Liu, Zhaoping. Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. ADVANCED ENERGY MATERIALS[J]. 2018, 8(12):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000433706700007.[29] Lin, Feng, Yang, Guang, Niu, Chao, Wang, Yanan, Zhu, Zhuan, Luo, Haokun, Dai, Chong, Mayerich, David, Hu, Yandi, Hu, Jonathan, Zhou, Xufeng, Liu, Zhaoping, Wang, Zhiming M, Bao, Jiming. Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(46):&nbsphttp://ir.nimte.ac.cn/handle/174433/17017.[30] 王国华, 刘兆平, 周旭峰, 汪伟, 韩雪, 马经博. 2018全球石墨烯技术专利分析. 新材料产业. 2018, 11-16, http://lib.cqvip.com/Qikan/Article/Detail?id=676763946.[31] 刘兆平. Micro-Scale Lithium Metal Stored Inside Cellular Graphene Scaffold towards Advanced Metallic Lithium Anodes. Adv. Energy Mater.. 2018, [32] Deng, Wei, Zhu, Wenhua, Zhou, Xufeng, Liu, Zhaoping. Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. ENERGY STORAGE MATERIALS[J]. 2018, 15: 266-273, http://dx.doi.org/10.1016/j.ensm.2018.05.005.[33] 王华兰, 刘日胜, 胡应乾, 邬继荣, 张国栋, 周旭峰, 刘兆平. 氧化石墨烯的纳米修饰及其在硅橡胶中的应用. 中国材料进展[J]. 2018, 37(3):&nbsp197-203+190, http://ir.nimte.ac.cn/handle/174433/16574.[34] Zhang, Xiaozhe, Raj, Devaraj Vasanth, Zhou, Xufeng, Liu, Zhaoping. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors. JOURNAL OF POWER SOURCES[J]. 2018, 382: 95-100, http://dx.doi.org/10.1016/j.jpowsour.2018.02.032.[35] Ma, Zhiying, Zhou, Xufeng, Deng, Wei, Lei, Da, Liu, Zhaoping. 3D Porous MXene (Ti3C2)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(4):&nbsp3634-3643, http://dx.doi.org/10.1021/acsami.7b17386.[36] Zhang, Wei, Yu, HuiChia, Wu, Lijun, Liu, Hao, Abdellahi, Aziz, Qiu, Bao, Bai, Jianming, Orvananos, Bernardo, Strobridge, Fiona C, Zhou, Xufeng, Liu, Zhaoping, Ceder, Gerbrand, Zhu, Yimei, Thornton, Katsuyo, Grey, Clare P, Wang, Feng. Localized concentration reversal of lithium during intercalation into nanoparticles. SCIENCE ADVANCES[J]. 2018, 4(1):&nbsphttp://ir.nimte.ac.cn/handle/174433/16917.[37] Zhang, Leyuan, Ding, Yu, Zhang, Changkun, Zhou, Yangen, Zhou, Xufeng, Liu, Zhaoping, Yu, Guihua. Enabling Graphene-Oxide-Based Membranes for Large-Scale Energy Storage by Controlling Hydrophilic Microstructures. CHEM[J]. 2018, 4(5):&nbsp1035-1046, http://dx.doi.org/10.1016/j.chempr.2018.02.003.[38] Fang, Qile, Zhou, Xufeng, Deng, Wei, Liu, Yuewen, Zheng, Zhi, Liu, Zhaoping. Nitrogen-Doped Graphene Nanoscroll Foam with High Diffusion Rate and Binding Affinity for Removal of Organic Pollutants. SMALL[J]. 2017, 13(14):&nbsphttp://ir.nimte.ac.cn/handle/174433/13889.[39] Jiang, Rongrong, Zhou, Xufeng, Liu, Zhaoping. Electroless Ni-plated graphene for tensile strength enhancement of copper. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2017, 679: 323-328, http://dx.doi.org/10.1016/j.msea.2016.10.029.[40] Ma, Jingbo, Zhou, Xufeng, Ding, Shiyun, Liu, Zhaoping. Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers. RSC ADVANCES[J]. 2017, 7(25):&nbsp15469-15474, https://www.webofscience.com/wos/woscc/full-record/WOS:000396290400060.[41] Zhang, Leyuan, Chen, Liang, Luo, Hao, Zhou, Xufeng, Liu, Zhaoping. Large-Sized Few-Layer Graphene Enables an Ultrafast and Long-Life Aluminum-Ion Battery. ADVANCED ENERGY MATERIALS[J]. 2017, 7(15):&nbsphttp://dx.doi.org/10.1002/aenm.201700034.[42] Deng, Wei, Zhou, Xufeng, Fang, Qile, Liu, Zhaoping. A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(26):&nbsp13674-13682, http://ir.nimte.ac.cn/handle/174433/13731.[43] Ma, Zhiying, Cao, Hailiang, Zhou, Xufeng, Deng, Wei, Liu, Zhaoping. Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries. RSC ADVANCES[J]. 2017, 7(26):&nbsp15857-15863, http://ir.nimte.ac.cn/handle/174433/14096.[44] 郑超, 周旭峰, 陈雪丹, 乔志军, 刘兆平, 阮殿波. 石墨烯在超级电容器及电池领域应用进展. 电子元件与材料[J]. 2017, 36(9):&nbsp71-74, [45] Wang, Yanan, Tang, Yingjie, Cheng, Peihong, Zhou, Xufeng, Zhu, Zhuan, Liu, Zhaoping, Liu, Dong, Wang, Zhiming, Bao, Jiming. Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. NANOSCALE[J]. 2017, 9(10):&nbsp3547-3554, http://ir.nimte.ac.cn/handle/174433/13940.[46] Lin, Feng, Zhu, Zhuan, Zhou, Xufeng, Qiu, Wenlan, Niu, Chao, Hu, Jonathan, Dahal, Keshab, Wang, Yanan, Zhao, Zhenhuan, Ren, Zhifeng, Litvinov, Dimitri, Liu, Zhaoping, Wang, Zhiming M, Bao, Jiming. Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene. ADVANCED MATERIALS[J]. 2017, 29(1):&nbsphttp://ir.nimte.ac.cn/handle/174433/14044.[47] Fang, Qile, Zhou, Xufeng, Deng, Wei, Liu, Zhaoping. Hydroxyl-containing organic molecule induced self-assembly of porous graphene monoliths with high structural stability and recycle performance for heavy metal removal. CHEMICAL ENGINEERING JOURNAL[J]. 2017, 308: 1001-1009, http://dx.doi.org/10.1016/j.cej.2016.09.139.[48] Liu, Yuewen, Siddique, Ahmad Hassan, Huang, Heran, Fang, Qile, Deng, Wei, Zhou, Xufeng, Lu, Huanming, Liu, Zhaoping. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries. NANOTECHNOLOGY[J]. 2017, 28(46):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000413574900001.[49] Jiang, Rongrong, Zhou, Xufeng, Liu, Zhaoping. Electroless Ni-plated graphene for tensile strength enhancement of copper. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2017, 679: 323-328, http://dx.doi.org/10.1016/j.msea.2016.10.029.[50] Rongrong Jiang, Xufeng Zhou, Zhaoping Liu. Electroless Ni-plated graphene for tensile strength enhancement of copper. Materials Science & Engineering A. 2017, 679: 323-328, http://dx.doi.org/10.1016/j.msea.2016.10.029.[51] Deng, Wei, Fang, Qile, Huang, Heran, Zhou, Xufeng, Ma, Jingbo, Liu, Zhaoping. Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. SMALL[J]. 2017, 13(34):&nbsphttp://ir.nimte.ac.cn/handle/174433/13627.[52] 徐丽, 盛鹏, 赵广耀, 刘海镇, 刘双宇, 沈鲁恺, 郑超, 周旭峰, 刘兆平. 基于海藻制备超级电容器用三维多孔石墨烯. 材料科学与工艺[J]. 2016, 24(5):&nbsp53-57, [53] Liang Chen, Hezhu Shao, Xufeng Zhou, Guoqiang Liu, Jun Jiang, Zhaoping Liu. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. NATURE COMMUNICATIONS[J]. 2016, 7(1):&nbsphttps://doaj.org/article/bb4ef95a2aa542d791d823f20593b4bf.[54] Deng, Wei, Zhou, Xufeng, Fang, Qile, Liu, Zhaoping. Graphene/Sulfur Composites with a Foam-Like Porous Architecture and Controllable Pore Size for High Performance Lithium-Sulfur Batteries. CHEMNANOMAT[J]. 2016, 2(10):&nbsp952-958, https://www.webofscience.com/wos/woscc/full-record/WOS:000387680000005.[55] Zhou Xufeng. Copper–graphene bulk composites with homogeneous grapheme dispersion and enhanced mechanical properties. Materials Science & Engineering A. 2016, [56] Fang, Qile, Zhou, Xufeng, Deng, Wei, Liu, Zhaoping. Ordered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures. NANOSCALE[J]. 2016, 8(1):&nbsp197-203, https://www.webofscience.com/wos/woscc/full-record/WOS:000366911700016.[57] Cao, Hailiang, Zhou, Xufeng, Deng, Wei, Liu, Zhaoping. A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(16):&nbsp6021-6028, https://www.webofscience.com/wos/woscc/full-record/WOS:000374790700032.[58] Deng, Wei, Fang, Qile, Zhou, Xufeng, Cao, Hailiang, Liu, Zhaoping. Hydrothermal self-assembly of graphene foams with controllable pore size. RSC ADVANCES[J]. 2016, 6(25):&nbsp20843-20849, https://www.webofscience.com/wos/woscc/full-record/WOS:000371019000049.[59] Jiang, Rongrong, Zhou, Xufeng, Fang, Qile, Liu, Zhaoping. Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING[J]. 2016, 654: 124-130, http://dx.doi.org/10.1016/j.msea.2015.12.039.[60] Fang, Qile, Zhou, Xufeng, Deng, Wei, Zheng, Zhi, Liu, Zhaoping. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. SCIENTIFIC REPORTS[J]. 2016, 6: http://ir.nimte.ac.cn/handle/174433/13111.[61] Hailiang Cao, Xufeng Zhou, Junli Shi, Zhaoping Liu. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries. Materials Science & Engineering B. 2016, 213: 51-56, http://dx.doi.org/10.1016/j.mseb.2016.05.003.[62] Cao, Hailiang, Zhou, Xufeng, Zheng, Chao, Liu, Zhaoping. Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(22):&nbsp11984-11990, http://ir.nimte.ac.cn/handle/174433/12450.[63] Zheng, C, Zhou, X F, Cao, H L, Wang, G H, Liu, Z P. Controllable synthesis of activated graphene and its application in supercapacitors. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(18):&nbsp9543-9549, https://www.webofscience.com/wos/woscc/full-record/WOS:000353927500026.[64] Jiang, Meng, Qian, Zhijiang, Zhou, Xufeng, Xin, Xing, Wu, Jinghua, Chen, Chao, Zhang, Gongjun, Xu, Gaojie, Cheng, Yuchuan. CTAB micelles assisted rGO-AgNP hybrids for SERS detection of polycyclic aromatic hydrocarbons. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2015, 17(33):&nbsp21158-21163, https://www.webofscience.com/wos/woscc/full-record/WOS:000359596600012.[65] Zhang, Leyuan, Chen, Liang, Zhou, Xufeng, Liu, Zhaoping. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. ADVANCED ENERGY MATERIALS[J]. 2015, 5(2):&nbsphttps://www.webofscience.com/wos/woscc/full-record/WOS:000348772600007.[66] Zhang, Leyuan, Chen, Liang, Zhou, Xufeng, Liu, Zhaoping. Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000366452100001.[67] He, Liqun, Ye, Jian, Shuai, Min, Zhu, Zhuan, Zhou, Xufeng, Wang, Yanan, Li, Yang, Su, Zhihua, Zhang, Haiyan, Chen, Ying, Liu, Zhaoping, Cheng, Zhengdong, Bao, Jiming. Graphene oxide liquid crystals for reflective displays without polarizing optics. NANOSCALE[J]. 2015, 7(5):&nbsp1616-1622, https://www.webofscience.com/wos/woscc/full-record/WOS:000348348300009.[68] Shen, Tao, Zhou, Xufeng, Cao, Hailiang, Zheng, Chao, Liu, Zhaoping. TiO2(B)-CNT-graphene ternary composite anode material for lithium ion batteries. RSC ADVANCES[J]. 2015, 5(29):&nbsp22449-22454, https://www.webofscience.com/wos/woscc/full-record/WOS:000350643700021.[69] Cao, Hailiang, Zhou, Xufeng, Zheng, Chao, Liu, Zhaoping. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. CARBON[J]. 2015, 89: 41-46, http://dx.doi.org/10.1016/j.carbon.2015.03.003.[70] Jin, Kangke, Zhou, Xufeng, Liu, Zhaoping. Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries. NANOMATERIALS[J]. 2015, 5(3):&nbsp1481-1492, https://doaj.org/article/4a937c239ceb4e0887ddae457304404d.[71] Zheng, C, Zhou, X F, Cao, H L, Wang, G H, Liu, Z P. Nitrogen-doped porous graphene-activated carbon composite derived from "bucky gels" for supercapacitors. RSC ADVANCES[J]. 2015, 5(14):&nbsp10739-10745, http://ir.nimte.ac.cn/handle/174433/12845.[72] Lv, Binbin, Zheng, Chao, Xu, Li, Zhou, Xufeng, Cao, Hailiang, Liu, Zhaoping. Porous Graphene-Like Materials Prepared from Hollow Carbonaceous Microspheres for Supercapacitors. CHEMNANOMAT[J]. 2015, 1(6):&nbsp422-429, https://www.webofscience.com/wos/woscc/full-record/WOS:000383767700006.[73] Xin, Xing, Zhou, Xufeng, Shen, Tao, Liu, Zhaoping. Synthesis and Electrochemical Performance of Graphene Wrapped SnxTi1-xO2 Nanoparticles as an Anode Material for Li-Ion Batteries. JOURNAL OF NANOMATERIALS[J]. 2015, 2015: http://ir.nimte.ac.cn/handle/174433/12742.[74] Chen, Liang, Zhang, Leyuan, Zhou, Xufeng, Liu, Zhaoping. Aqueous Batteries Based on Mixed Monovalence Metal Ions: A New Battery Family. CHEMSUSCHEM[J]. 2014, 7(8):&nbsp2295-2302, https://www.webofscience.com/wos/woscc/full-record/WOS:000340519500032.[75] Wang, Yi, Yu, Jinhong, Dai, Wen, Wang, Dong, Song, Yingze, Bai, Hua, Zhou, Xufeng, Li, Chaoyang, Lin, ChengTe, Jiang, Nan. Epoxy composites filled with one-dimensional SiC nanowires-two-dimensional graphene nanoplatelets hybrid nanofillers. RSC ADVANCES[J]. 2014, 4(103):&nbsp59409-59417, https://www.webofscience.com/wos/woscc/full-record/WOS:000345652300063.[76] Wang, Dazhi, Ma, Qian, Liang, Junsheng, Xue, Fanghong, Chen, Li, Wang, Xiaodong, Zhou, Xufeng, Liu, Zhaoping. Patterning of graphene microscale structures using electrohydrodynamic atomisation deposition of photoresist moulds. MICRO & NANO LETTERS[J]. 2014, 9(2):&nbsp136-140, https://www.webofscience.com/wos/woscc/full-record/WOS:000333393900017.[77] Hu, Lingjun, Qiu, Bao, Xia, Yonggao, Qin, Zhihong, Qin, Laifen, Zhou, Xufeng, Liu, Zhaoping. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries. JOURNAL OF POWER SOURCES[J]. 2014, 248(1):&nbsp246-252, http://dx.doi.org/10.1016/j.jpowsour.2013.09.048.[78] Zheng, C, Zhou, X F, Cao, H L, Wang, G H, Liu, Z P. Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(20):&nbsp7484-7490, https://www.webofscience.com/wos/woscc/full-record/WOS:000334998400047.[79] Zheng, Chao, Zhou, Xufeng, Cao, Hailiang, Wang, Guohua, Liu, Zhaoping. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. JOURNAL OF POWER SOURCES[J]. 2014, 258: 290-296, http://dx.doi.org/10.1016/j.jpowsour.2014.01.056.[80] Qian, Zhijiang, Cheng, Yuchuan, Zhou, Xufeng, Wu, Jinghua, Xu, Gaojie. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. JOURNAL OF COLLOID AND INTERFACE SCIENCE[J]. 2013, 397: 103-107, http://dx.doi.org/10.1016/j.jcis.2013.01.049.[81] Chen, Liang, Gu, Qingwen, Zhou, Xufeng, Lee, Saixi, Xia, Yonggao, Liu, Zhaoping. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes. SCIENTIFIC REPORTS[J]. 2013, 3: https://www.webofscience.com/wos/woscc/full-record/WOS:000319899500008.[82] 刘兆平, 周旭峰. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes. Sci. Rep. 3[J]. 2013, 11(1946):&nbsp1—7-, http://www.irgrid.ac.cn/handle/1471x/755574.[83] Cao, Hailiang, Zhou, Xufeng, Qin, Zhihong, Liu, Zhaoping. Low-temperature preparation of nitrogen-doped graphene for supercapacitors. CARBON[J]. 2013, 56(1):&nbsp218-223, http://dx.doi.org/10.1016/j.carbon.2013.01.005.[84] Liu Zhaoping, Zhou Xufeng. Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium–Sulfur Batteries. J. Phys. Chem. C[J]. 2013, 21112—21119-, http://www.irgrid.ac.cn/handle/1471x/755677.[85] Zhou, Liang, Zhou, Xufeng, Huang, Xiaodan, Liu, Zhaoping, Zhao, Dongyuan, Yao, Xiangdong, Yu, Chengzhong. Designed synthesis of LiMn2O4 microspheres with adjustable hollow structures for lithium-ion battery applications. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2013, 1(3):&nbsp837-842, https://www.webofscience.com/wos/woscc/full-record/WOS:000314632100053.[86] Cao, Hailiang, Zhou, Xufeng, Zhang, Yiming, Chen, Liang, Liu, Zhaoping. Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. JOURNAL OF POWER SOURCES[J]. 2013, 243(1):&nbsp715-720, http://dx.doi.org/10.1016/j.jpowsour.2013.06.032.[87] Jin, Kangke, Zhou, Xufeng, Zhang, Liangzhong, Xin, Xing, Wan, Guohua, Liu, Zhaoping. Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium-Sulfur Batteries. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2013, 117(41):&nbsp21112-21119, https://www.webofscience.com/wos/woscc/full-record/WOS:000326125800010.[88] 赵东元. A Magnetite Nanocrystal/Graphene Composite As High Performance Anode For Lithium-Ion Batteries. Journal of Alloys and Compounds[J]. 2012, 514: 76-80, [89] Xin, Xing, Zhou, Xufeng, Wu, Jinghua, Yao, Xiayin, Liu, Zhaoping. Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS NANO[J]. 2012, 6(12):&nbsp11035-11043, http://www.irgrid.ac.cn/handle/1471x/755379.[90] Juanjuan Liu, Jun Wang, Yonggao Xia, Xufeng Zhou, Yaletu Saixi, Zhaoping Liu. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+δ (0 ≤ x ≤ 0.15) cathode materials for lithium-ion batteries. Materials Research Bulletin[J]. 2012, 47(3):&nbsp807-812, http://dx.doi.org/10.1016/j.materresbull.2011.11.058.[91] Lin, YenFu, Chiu, ShaoChien, Wang, ShengTsung, Fu, ShengKai, Chen, ChienHsiang, Xie, WenJia, Yang, ShengHsiung, Hsu, ChainShu, Chen, JennFang, Zhou, Xufeng, Liu, Zhaoping, Fang, Jiye, Jian, WenBin. Dielectrophoretic placement of quasi-zero-, one-, and two-dimensional nanomaterials into nanogap for electrical characterizations. ELECTROPHORESIS[J]. 2012, 33(16):&nbsp2475-2481, http://dx.doi.org/10.1002/elps.201200145.[92] Liu, Juanjuan, Wang, Jun, Xia, Yonggao, Zhou, Xufeng, Saixi, Yaletu, Liu, Zhaoping. Synthesis and electrochemical performance of Li1+xNi0.5Mn0.3Co0.2O2+delta (0 <= x <= 0.15) cathode materials for lithium-ion batteries. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(3):&nbsp807-812, https://www.webofscience.com/wos/woscc/full-record/WOS:000301994100050.[93] Qin, Zhihong, Zhou, Xufeng, Xia, Yonggao, Tang, Changlin, Liu, Zhaoping. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(39):&nbsp21144-21153, https://www.webofscience.com/wos/woscc/full-record/WOS:000308893400048.[94] 周旭峰, 刘兆平, Zhihong Qin, Xufeng Zhou, Yonggao Xia, Changlin Tang and Zhaoping Liu. Morphology controlled synthesis and modification of highperformance LiMnPO4 cathode materials for Li-ion batteries. J. Mater. Chem.[J]. 2012, 29(39):&nbsp21144—21153-, http://www.irgrid.ac.cn/handle/1471x/755323.[95] Wang, ShengTsung, Lin, YenFu, Li, YaChi, Yeh, PeiChing, Tang, ShiowJing, Rosenstein, Baruch, Hsu, TaiHsin, Zhou, Xufeng, Liu, Zhaoping, Lin, MinnTsong, Jian, WenBin. Direct probing of density of states of reduced graphene oxides in a wide voltage range by tunneling junction. APPLIED PHYSICS LETTERS[J]. 2012, 101(18):&nbsphttp://dx.doi.org/10.1063/1.4765361.[96] Liu, Qinghong, Zhou, Xufeng, Fan, Xinyu, Zhu, Chunyang, Yao, Xiayin, Liu, Zhaoping. Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING[J]. 2012, 51(3):&nbsp251-256, http://www.irgrid.ac.cn/handle/1471x/755189.[97] Xin, Xing, Zhou, Xufeng, Wang, Feng, Yao, Xiayin, Xu, Xiaoxiong, Zhu, Yimei, Liu, Zhaoping. A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(16):&nbsp7724-7730, http://www.irgrid.ac.cn/handle/1471x/755215.[98] Wang, Xuyang, Zhou, Xufeng, Yao, Ke, Zhang, Jiangang, Liu, Zhaoping. A SnO2/graphene composite as a high stability electrode for lithium ion batteries. CARBON[J]. 2011, 49(1):&nbsp133-139, http://dx.doi.org/10.1016/j.carbon.2010.08.052.[99] Zhuge, Fei, Hu, Benlin, He, Congli, Zhou, Xufeng, Liu, Zhaoping, Li, RunWei. Mechanism of nonvolatile resistive switching in graphene oxide thin films. CARBON[J]. 2011, 49(12):&nbsp3796-3802, http://dx.doi.org/10.1016/j.carbon.2011.04.071.[100] Wang J, Yao XY, Zhou XF, Liu ZP. Synthesis and electrochemical properties of layered lithium transition metal oxides. 2011, http://www.irgrid.ac.cn/handle/1471x/754521.[101] Wang, Jun, Yao, Xiayin, Zhou, Xufeng, Liu, Zhaoping. Synthesis and electrochemical properties of layered lithium transition metal oxides. JOURNAL OF MATERIALS CHEMISTRY[J]. 2011, 21(8):&nbsp2544-2549, https://www.webofscience.com/wos/woscc/full-record/WOS:000287092000021.[102] Chen, Yanhua, Yao, Xiayin, Zhou, Xufeng, Pan, Zhijuan, Gu, Qun. Poly(lactic acid)/Graphene Nanocomposites Prepared via Solution Blending Using Chloroform as a Mutual Solvent. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2011, 11(9):&nbsp7813-7819, https://www.webofscience.com/wos/woscc/full-record/WOS:000296209900036.[103] Zhou, Xufeng, Wang, Feng, Zhu, Yimei, Liu, Zhaoping. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2011, 21(10):&nbsp3353-3358, https://www.webofscience.com/wos/woscc/full-record/WOS:000287585300012.[104] Zhou, XF, Zhou, Xufeng, Liu, Zhaoping. Graphene foam as an anode for high-rate Li-ion batteries. 2011, http://ir.nimte.ac.cn/handle/174433/16453.[105] Huang, Xiaodan, Zhou, Xufeng, Zhou, Liang, Qian, Kun, Wang, Yunhua, Liu, Zhaoping, Yu, Chengzhong. A Facile One-Step Solvothermal Synthesis of SnO2/Graphene Nanocomposite and Its Application as an Anode Material for Lithium-Ion Batteries. CHEMPHYSCHEMnull. 2011, 12(2):&nbsp278-281, https://www.webofscience.com/wos/woscc/full-record/WOS:000287792300008.[106] 钱逸泰. Synthetic Methodologies for Carbon Nanomaterials. ADVANCED MATERIALS[J]. 2010, 22(17):&nbsp1963-1966, http://www.irgrid.ac.cn/handle/1471x/754480.[107] Yang, Shiliu, Zhou, Xufeng, Zhang, Jiangang, Liu, Zhaoping. Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. JOURNAL OF MATERIALS CHEMISTRY[J]. 2010, 20(37):&nbsp8086-8091, https://www.webofscience.com/wos/woscc/full-record/WOS:000281726600026.[108] Zhu, Jie, Tang, Jiawei, Zhao, Lingzhi, Zhou, Xufeng, Wang, Yunhua, Yu, Chengzhong. Ultrasmall, Well-Dispersed, Hollow Siliceous Spheres with Enhanced Endocytosis Properties. SMALL[J]. 2010, 6(2):&nbsp276-282, https://www.webofscience.com/wos/woscc/full-record/WOS:000274363800021.[109] Zhou, Xufeng, Liu, Zhaoping. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. CHEMICAL COMMUNICATIONS[J]. 2010, 46(15):&nbsp2611-2613, https://www.webofscience.com/wos/woscc/full-record/WOS:000276153800023.[110] He, C L, Zhuge, F, Zhou, X F, Li, M, Zhou, G C, Liu, Y W, Wang, J Z, Chen, B, Su, W J, Liu, Z P, Wu, Y H, Cui, P, Li, RunWei. Nonvolatile resistive switching in graphene oxide thin films. APPLIED PHYSICS LETTERS[J]. 2009, 95(23):&nbsphttp://ir.nimte.ac.cn/handle/174433/381.[111] Yuan, Pei, Zhou, Xufeng, Wang, Hongning, Liu, Nian, Hu, Yifan, Auchterlonie, Groeme J, Drennan, John, Yao, Xiangdong, Lu, Gao Qing Max, Zou, Jin, Yu, Chengzhong. Electron-Tomography Determination of the Packing Structure of Macroporous Ordered Siliceous Foams Assembled From Vesicles. SMALL[J]. 2009, 5(3):&nbsp377-382, [112] Yuan, Pei, Yang, Sui, Wang, Hongning, Yu, Meihua, Zhou, Xufeng, Lu, Gaoqing, Zou, Jin, Yu, Chengzhong. Structure transition from hexagonal mesostructured rodlike silica to multilamellar vesicles. LANGMUIR[J]. 2008, 24(9):&nbsp5038-5043, [113] Yuan, Pei, Liu, Nian, Zhao, Lingzhi, Zhou, Xufeng, Zhou, Liang, Auchterlonie, Graeme J, Yao, Xiangdong, Drennan, John, Lu, Gao Qing Max, Zou, Jin, Yu, Chengzhong. Solving complex concentric circular mesostructures by using electron tomography. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2008, 47(35):&nbsp6670-6673, [114] Zhao, Lingzhi, Yan, Xiaoxia, Zhou, Xufeng, Zhou, Liang, Wang, Hongning, Tang, Hawei, Yu, Chengzhong. Mesoporous bioactive glasses for controlled drug release. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2008, 109(1-3):&nbsp210-215, http://dx.doi.org/10.1016/j.micromeso.2007.04.041.[115] Zhou, Xufeng, Qiao, Shizhang, Hao, Na, Wang, Xinglong, Yu, Chengzhong, Wang, Lianzhou, Zhao, Dongyuan, Lu, Gao Qing. Synthesis of ordered cubic periodic mesoporous organosilicas with ultra-large pores. CHEMISTRY OF MATERIALS[J]. 2007, 19(7):&nbsp1870-1876, https://www.webofscience.com/wos/woscc/full-record/WOS:000245208100045.[116] Yu, Meihua, Wang, Hongning, Zhou, Xufeng, Yuan, Pei, Yu, Chengzhong. One template synthesis of raspberry-like hierarchical siliceous hollow spheres. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2007, 129(47):&nbsp14576-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000251142200024.[117] Wang, Hongning, Wang, Yunhua, Zhou, Xufeng, Zhou, Liang, Tang, Jiawei, Lei, Jie, Yu, Chengzhong. Siliceous unilamellar vesicles and foams by using block-copolymer cooperative vesicle templating. ADVANCED FUNCTIONAL MATERIALS[J]. 2007, 17(4):&nbsp613-617, https://www.webofscience.com/wos/woscc/full-record/WOS:000245054900015.[118] Li, HuiQiao, Luo, JiaYan, Zhou, XuFeng, Yu, ChengZhong, Xia, YongYao. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications. JOURNAL OF THE ELECTROCHEMICAL SOCIETY[J]. 2007, 154(8):&nbspA731-A736, https://www.webofscience.com/wos/woscc/full-record/WOS:000247572100001.[119] Zhou Xufeng. Siliceous Nanopods via a Compromised Dual Templating Approach. Angewandte Chemie International Edition. 2007, [120] 赵东元. Hexylene- and Octylene-Bridged Polysilsesquioxane Hybrid Crystals Self-Assembled by Dimeric Building Blocks with Ring Structures. Chemistry - A European Journal[J]. 2006, 12(33):&nbsp8484-8490, https://www.webofscience.com/wos/woscc/full-record/WOS:000242388900006.[121] 赵东元. Easy synthesis and supercapacities of highly ordered mesoporous polyacenes/carbons. CARBONnull. 2006, 44(8):&nbsp1601-1604, http://dx.doi.org/10.1016/j.carbon.2006.02.025.[122] 赵东元. Highly efficient enrichment and subsequent digestion of proteins in the mesoporous molecular sieve silicate SBA-15 for matrix-assisted laser desorption/ionization mass spectrometry with time-of-flight/time-of-flight analyzer peptide mapping. RAPID COMMUNICATIONS IN MASS SPECTROMETRY[J]. 2006, 20(20):&nbsp3139-3144, [123] Yang, Sui, Zhao, Lingzhi, Yu, Chengzhong, Zhou, Xufeng, Tang, Jiawei, Yuan, Pei, Chen, Daoyong, Zhao, Dongyuan. On the origin of helical mesostructures. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2006, 128(32):&nbsp10460-10466, https://www.webofscience.com/wos/woscc/full-record/WOS:000239618700029.
发表著作
(1) 石墨烯在能源存储与转换中的应用, Graphene: Energy Storage and Conversion Applications, CRC Press, 2015-01, 第 2 作者
科研活动
科研项目
( 1 )&nbsp溶致液晶导向制备石墨烯纳米复合电极材料及其电化学性能研究, 主持, 国家级, 2013-01--2015-12( 2 )&nbsp石墨烯电极材料可控制备、石墨烯基电池组装技术研究, 主持, 国家级, 2015-02--2016-05( 3 )&nbsp石墨烯在电动汽车用磷酸铁锂动力电池中产业化应用开发, 主持, 省级, 2013-09--2016-12( 4 )&nbsp青年创新促进会, 主持, 部委级, 2014-01--2017-12( 5 )&nbsp高比容量正极材料结构设计及离子储存机制研究, 主持, 部委级, 2015-05--2018-04( 6 )&nbsp柔性储能器件及其关 键材料的基础科学与关键技术研究, 主持, 省级, 2018-01--2020-12( 7 )&nbsp石墨烯改性金属锂负极, 主持, 部委级, 2019-01--2020-06
参与会议
(1)Graphene-based nanocomposites for energy storage 周旭峰 2012-10-22
指导学生
已指导学生张良忠 硕士研究生 085204-材料工程 张乐园 硕士研究生 080501-材料物理与化学 苏月宾 硕士研究生 080501-材料物理与化学 马志英 硕士研究生 085204-材料工程 现指导学生陈稳 博士研究生 080501-材料物理与化学 赵斐 博士研究生 080501-材料物理与化学
2013 中国科学院大学,网络信息中心.